Abbreviations
used:
I - irrational number, A - algebraic number, T -
transcendental number, ? - unknown
Gen - General, NuT - Number theory, ChT - Chaos
theory, Com - Combinatorics, Inf - Information theory,
Ana - Mathematical analysis
Symbol |
Approximate Value |
Name |
Field |
N |
First Described |
# of Known Digits |
π |
≈ 3.14159 26535 89793 23846 26433 83279 50288 |
Pi, Archimedes' constant or Ludolph's number |
Gen, Ana |
T |
by c. 2000 BC |
1,241,100,000,000 |
e |
≈ 2.71828 18284 59045 23536 02874 71352 66249 |
Napier's constant, base of Natural logarithm |
Gen, Ana |
T |
1618 |
50,100,000,000 |
√2 |
≈ 1.41421 35623 73095 04880 16887 24209 69807 |
Pythagoras' constant, square root of two |
Gen |
I |
by c. 800 BC |
137,438,953,444 |
√3 |
≈ 1.73205 08075 68877 29352 74463 41505 |
Theodorus' constant, square root of three |
Gen |
I |
by c. 800 BC |
|
γ |
≈ 0.57721 56649 01532 86060 65120 90082 40243 |
Euler-Mascheroni constant |
Gen, NuT |
|
1735 |
108,000,000 |
φ |
≈ 1.61803 39887 49894 84820 45868 34365 63811 |
Golden ratio |
Gen |
A |
by 3rd century BC |
3,141,000,000 |
β* |
≈ 0.70258 |
Embree-Trefethen constant |
NuT |
|
|
|
δ |
≈ 4.66920 16091 02990 67185 32038 20466 20161 |
Feigenbaum constant |
ChT |
|
1975 |
|
α |
≈ 2.50290 78750 95892 82228 39028 73218 21578 |
Feigenbaum constant |
ChT |
|
|
|
C2 |
≈ 0.66016 18158 46869 57392 78121 10014 55577 |
Twin prime constant |
NuT |
|
|
5,020 |
M1 |
≈ 0.26149 72128 47642 78375 54268 38608 69585 |
Meissel-Mertens constant |
NuT |
|
1866 |
8,010 |
B2 |
≈ 1.90216 05823 |
Brun's constant for twin prime |
NuT |
|
1919 |
10 |
B4 |
≈ 0.87058 83800 |
Brun's constant for prime quadruplets |
NuT |
|
|
|
Λ |
> – 2.7 · 10-9 |
de Bruijn-Newman constant |
NuT |
|
1950? |
|
K |
≈ 0.91596 55941 77219 01505 46035 14932 38411 |
Catalan's constant |
Com |
|
|
201,000,000 |
K |
≈ 0.76422 36535 89220 66 |
Landau-Ramanujan constant |
NuT |
I (?) |
|
30,010 |
K |
≈ 1.13198 824 |
Viswanath's constant |
NuT |
|
|
8 |
B´L |
= 1 |
Legendre's constant |
NuT |
|
|
|
μ |
≈ 1.45136 92348 83381 05028 39684 85892 027 |
Ramanujan-Soldner constant |
NuT |
|
|
75,500 |
EB |
≈ 1.60669 51524 15291 763 |
Erdős–Borwein constant |
NuT |
I |
|
|
Ω |
depends on computation model |
Chaitin's constant |
Inf |
T |
|
|
β |
≈ 0.28016 94990 |
Ana |
|
|
|
|
λ |
≈ 0.30366 30029 |
Com |
|
1974 |
385 |
|
D(1) |
≈ 0.35323 63719 |
NuT |
|
1993 |
|
|
λ, μ |
≈ 0.62432 99885 |
Com NuT |
|
1930 |
|
|
|
≈ 0.62946 50204 |
|
|
|
|
|
|
≈ 0.66274 34193 |
|
|
|
|
|
|
≈ 0.80939 40205 |
NuT |
|
|
|
|
Λ |
≈ 1.09868 58055 |
Com |
|
1992 |
|
|
|
≈ 1.18656 91104 |
NuT |
|
|
|
|
|
≈ 1.20205 69031 59594 28539 97381 |
|
|
1979 |
1,000,000,000 |
|
θ |
≈ 1.30637 78838 63080 69046 |
NuT |
? |
1947 |
|
|
|
≈ 1.45607 49485 82689 67139 95953 51116 54356 |
|
|
|
|
|
|
≈ 1.46707 80794 |
NuT |
|
1975 |
|
|
|
≈ 1.53960 07178 |
Com |
|
1967 |
|
|
|
≈ 1.70521 11401 05367 |
NuT |
|
1969 |
|
|
|
≈ 2.58498 17596 |
|
|
|
|
|
|
≈ 2.68545 2001 |
NuT |
? |
1934 |
7350 |
|
F |
≈ 2.80777 02420 |
Ana |
|
|
|
|
L |
≈ .5 |
Landau's constant |
Ana |
|
|
1 |